STUDIES ON JUVENIMICIN, A NEW ANTIBIOTIC. II

ISOLATION, CHEMICAL CHARACTERIZATION AND STRUCTURES

TOYOKAZU KISHI, SETSUO HARADA, HIDEO YAMANA and AKIRA MIYAKE

Medicinal Research Laboratories, Central Research Division, Takeda Chemical Industries, Ltd., Yodogawa-ku, Osaka 532, Japan

(Received for publication June 26, 1976)

A series of new macrolide antibiotics was isolated from the culture filtrate of *Micromonospora chalcea* var. *izumensis*. The fat-soluble basic complex consisted of eight components which were named juvenimicin $A_1 \sim A_4$ and $B_1 \sim B_4$. Juvenimicin A_3 was found to be identical with rosamicin and the structures of four of the other components (JVM A_2 , A_4 , B_1 and B_3) have been elucidated. Juvenimicin A_2 has a methyl group at position 6 instead of the formylmethyl group of juvenimicin A_3 . Juvenimicin A_4 , B_1 and B_3 possess a hydroxyethyl group at position 6. Juvenimicin A_4 and B_1 differ from each other in the nature of the chromophore. Juvenimicin B_3 differs from juvenimicin B_1 in that a hydroxymethyl group is present at position 14 in the former.

The active fractions obtained from the culture filtrate of *Micromonospora chalcea* var. *izumensis*¹⁾ were composed of fat-soluble basic antibiotics, juvenimicins (JVM), and neutral antibiotics, everninomicins (EVM).²⁾ Juvenimicin was purified by chromatography to afford five of the components JVM A_2 , A_3 , A_4 , B_1 and B_8 as single entities. The antibiotics of the A and the B groups displayed absorption maxima at 241 and 283 nm, respectively.

This paper deals with the isolation, chemical characterization and structures of the juvenimicin components.

Isolation

The culture filtrate of *M. chalcea* var. *izumensis* was adjusted to pH 9 and extracted with ethyl acetate. The organic layer was extracted with hydrochloric acid (pH 3) and the aqueous layer was reextracted with ethyl acetate at pH 9. This extract was concentrated to afford a crude powder of JVM. The initial ethyl acetate extract on concentration gave crude EVM. The crude powder of JVM was chromatographed on a column of Sephadex LH-20. The active fractions obtained were shown to be comprised of eight metabolites by TLC on silica gel with a solvent system of CHCl₃ - MeOH - 7% NH₄OH (40:12:20, lower layer) and named JVM A₁~A₄ and B₁~B₄. The major components, JVM A₂, A₃, A₄, B₁ and B₃, were scraped from the TLC-plates and extracted with ethyl acetate at pH 9. The extracts were washed with water and concentrated to afford each component. The crude powder of EVM obtained from the initial ethyl acetate layer was purified by column chromatography on activated carbon and the active eluates were collected and concentrated to afford a white powder. The main component, EVM D, was isolated from the powder by TLC on silica gel.

Chemical Characterization

Each component of JVM behaves as a single spot on TLC and gives a positive color reaction with

THE JOURNAL OF ANTIBIOTICS

DRAGENDORFF's reagent. They are, however, negative to FISCHBACH's carbomycin and erythromycin tests.³⁾ The juvenimicins are soluble in benzene, chloroform, ethyl acetate, dimethyl formamide, alcohols and acidic aqueous solvents but insoluble in petroleum ether, hexane and water.

The specific rotation of JVM A_2 is $[\alpha]_D^{24} + 17.9^\circ$ (*c* 0.52, chloroform) and its UV spectrum in methanol displays a maximum at 241 nm (ε =14,900). From the elemental analysis and mass spectrum (*m/e* 553 (M⁺)), the molecular formula $C_{30}H_{51}NO_8$ was assigned to JVM A_2 . A 3,2'-diacetate was obtained from JVM A_2 by treatment with acetic anhydride in pyridine and its elemental analysis and mass spectrum confirmed the molecular formula assigned to JVM A_2 . The IR spectrum of JVM A_2 is shown in Fig. 1.

The melting point of JVM A₃ is 120~125°C (decomp.) and its specific rotation $[\alpha]_{D^4}^{24}$ –17.6° (*c* 0.29, chloroform). A pKa' of 8.4 (in 66% DMF) was obtained by the titration method. The UV spectrum of JVM A₃ in ethanol displays a maximum at 241 nm (ε =13,900) like that of JVM A₂. From the elemental analysis and mass spectral data *m/e* 581 (M⁺), the molecular formula of JVM A₃ was established to be C₈₁H₅₁NO₉. This formula was in good accord with the data generated for JVM A₃ 3,2'-diacetate.

The specific rotation of JVM A₄ is $[\alpha]_D^{24} - 9.6^\circ$ (*c* 0.5, chloroform). The UV spectrum of JVM A₄ in methanol displays a maximum at 241 nm (ε =13,700). From the elemental analysis and mass spectrum (*m/e* 583 (M⁺)), the molecular formula of JVM A₄ was established to be C₃₁H₅₃NO₉. This formula is consistent with the data collected for JVM A₄ 3,18,2'-triacetate. The IR spectrum of JVM A₄ is shown in Fig. 2.

The specific rotation of JVM B₁ is $[\alpha]_D^{24} + 7.6^\circ$ (*c* 0.5, chloroform). The UV spectrum of JVM B₁ in ethanol displays a maximum at 283 nm (ε =18,500) which is different from those of the components of the A group. From the elemental analysis and mass spectrum (*m*/*e* 567 (M⁺)), the molecular formula of JVM B₁ was established to be C₈₁H₅₈NO₈. This formula is consistent with the data generated for JVM B₁ 3,18,2'-triacetate. The IR spectrum of JVM B₁ is shown in Fig. 3.

The specific rotation of JVM B₃ is $[\alpha]_{D}^{24} + 9.2^{\circ}$ (c 0.5, chloroform) and its UV spectrum in methanol displays a maximum at 283 nm (ε =19,200). From the elemental analysis and mass spectrum (*m/e* 583 (M⁺)), the molecular formula of JVM B₃ was established as C₃₁H₅₃NO₉. This formula was consistent with the data generated for JVM B₃ 3,18,21,2'-tetraacetate. The IR spectrum of JVM B₃ is shown in Fig. 4. These data are summarized in Table 1.

Antibiotic	$ \begin{array}{c} [\alpha]_{\rm D}^{24} \ (c \ 0.5) \\ (\text{Solvent}) \end{array} $	$\begin{array}{c} \mathrm{UV}\lambda_{\max} \ \mathrm{nm}(\epsilon) \\ (\mathrm{Solvent}) \end{array}$	Analysis Found (Calcd.)	Molecular formula (MS (M ⁺))	TLC* (Rf)
JVM A ₂	$+17.9^{\circ}$ (CHCl ₃) -13.0° (MeOH)	241 (14,900) (MeOH)	C, 64.68; H, 9.44; N, 2.57 (C, 65.06; H, 9.28; N, 2.53)	C ₃₀ H ₅₁ NO ₈ (553)	0.80
JVM A ₃	-17.6° (CHCl ₃) -31.2° (EtOH)	241 (13,900) (EtOH)	C, 63.22; H, 8.54; N, 3.02 (C, 64.08; H, 8.85; N, 2.41)	C ₃₁ H ₅₁ NO ₉ (581)	0.70
JVM A ₄	9.6° (CHCl ₃) -27.4° (MeOH)	241 (13,700) (MeOH)	C, 62.55; H, 9.03; N, 2.56 (C, 63.86; H, 9.16; N, 2.40)	C ₃₁ H ₅₃ NO ₉ (583)	0.65
JVM B ₁	$+7.6^{\circ}$ (CHCl ₃) -3.0° (MeOH)	283 (18,500) (EtOH)	C, 64.76; H, 9.60; N, 2.35 (C, 65.66; H, 9.42; N, 2.47)	C ₃₁ H ₅₃ NO ₈ (567)	0.50
JVM B ₃	+9.2° (CHCl ₃) -8.0° (MeOH)	283 (19,500) (MeOH)	C, 62.14; H, 8.70; N, 2.20 (C, 63.86; H, 9.16; N, 2.40)	C ₃₁ H ₅₃ NO ₉ (583)	0.33

Table 1. Physico-chemical properties of juvenimicins

* Adsorbent; SiO₂, spot film (Tokyo Kasei), Solvent system; CHCl₃ - MeOH - 7%NH₄OH (40:12:20, lower layer), Detection; UV (258 nm) and conc. H₂SO₄. The Rf values of the other minor components are as follows: JVM A₁=0.85, JVM B₂=0.40, JVM B₄=0.25.

Reference Studies with Similar Macrolides

The basic macrolides⁴⁾ which display a maximum at 240~242 nm, cirramycin $A_1^{5)}$ and B-58941 $B^{6a)}$ are similar to JVM A_3 in both physico-chemical and biological properties. These antibiotics are distinguished from each other by TLC, mass and NMR spectra. The structure of cirramycin A_1 was elucidated.^{5e,6)}

THE JOURNAL OF ANTIBIOTICS

Juvenimicin	M+	M+-S1	$M^+ - S_1 - H_2O$	S_1^*	S_2^{**}		
A ₃	581 (1.4)	407 (1.9)	389 (1.6)	174 (56)	158 (100)		116 (40)
A_2	553 (2.5)	379 (12)	361 (4.5)	174 (94)	158 (100)		116 (70)
A4	583 (1.7)	409 (5.7)	391 (5.6)	174 (100)	158 (94)		116 (93)
B1	567 (2.1)	393 (13)	375 (1.5)	174 (60)	158 (100)		116 (49)
B_3	583 (2,3)	409 (4.0)	391 (1,1)	174 (33)	158 (59)	118 (100)	116 (41)

Table 2. Mass spectra of juvenimicins (m/e (%))

The peaks showed in this table are of mass greater than m/e 116 and their relative intensities are more than 1%.

Table 3.	Chemical	shifts	and	coupling	constants	of	juvenir	nicins
					11	00	ATT	ana

(100 MHz, CDCl₃, δ =ppm, J=Hz)

Protons	JVM A ₃	JVM A ₂	JVM A ₄	JVM B ₁	JVM B ₃
H ₁₈	9.69 (s, like)		3.70 (m, 2H)	3.70 (m, 2H)	3.73 (m, 2H)
H_{11}	6.55 (d, J=16)	6.54 (d, J=16)	6.54 (d, J=16)	7.28 (d, J=16)	7.34 (d, J=16)
H_{10}	6.36 (d, J=16)	6.38 (d, J=16)	6.36 (d, J=16)	6.28 (d, J=16)	6.29 (d, J=16)
H_{15}	4.84 (m)	4.84 (m)	4.84 (m)	4.95 (m)	4.97 (m)
H_1'	4.19 (d, J=7)	4.23 (d, J=8)	4.28 (d, J=7)	4.25 (d, J=7)	4.26 (d, J=7)
${ m H}_3$	3.87 (d, like, J=10)	3.82 (d, like, J=10)	3.84 (d, like, $J=10$)	3.75 (d, like, J=10)	3.76 (d, like, J=10)
${ m H}_5$	3.65 (d, like, J=10)	3.51 (d, like, J=10)	3.65 (d, like, J=9)	3.65 (d, like, J=10)	3.59 (d, like, J=10)
H_{5}'	3.42 (m)	3.44 (m)	3.48 (m)	3.52 (m)	3.53 (m)
$\mathrm{H_{2}'}$	3.18 (q, J=7, 10)	3.20 (q, J=7, 10)	3.20 (q, J=7, 10)	3.21 (q, J=7, 10)	3.20 (q, J=6, 10)
H_{13}	2.78 (d, J=9)	2.76 (d, J=9)	2.78 (d, J=10)	5.83 (d, like, $J=10$)	5.83 (d, like, J=10)
H_{3}'	2.56 (m)	2.60 (m)	2.57 (m)	2.52 (m)	2.50 (m)
H_2	2.16~2.6 (m, 2H)	2.16~2.6 (2H)	2.15~2.6(2H)	2.22~2.63(2H)	2.24~2.60 (2H)
N-dimethyl	2.22 (s, 3H×2)	2.24 (s, 3H×2)	2.24 (s, 3H×2)	2.27 (s, 3H×2)	2.26 (s, $3H \times 2$)
H_{20}	1.40 (s, 3H)	1.40 (s, 3H)	1.40 (s, 3H)	1.80 (s, 3H)	1.79 (s, 3H)
secmethyl	$1.1 \sim 41.19$ (d, 3H×4)	$1.09 \sim 1.20$ (d, 3H×5)	$1.12 \sim 1.21$ (d, 3H×4)	$1.15 \sim 1.21$ (d, 3H×3)	$1.07 \sim 1.20$ (d, 3H×3)
H_{23}	0.88 (t, 3H)	0.87 (t, 3H)	0.88 (t, 3H)	0.86 (t, 3H)	0.91 (t, 3H)
\mathbf{H}_{21}				0.98 (d, 3H, J=7)	3.62 (2H)

The fragment ions (m/e 174 (B⁺) and 190) derived from mycaminose in cirramycin A₁ were found to correspond to the peaks of m/e 158 (B⁺) and 174 in JVM A₃ (Table 2). This difference (174–158, and 190–174=16) was also observed with the parent peaks. In the NMR spectrum of cirramycin A₁, the signal assigned to the N,N-dimethyl group (2.50 ppm) is shifted up-field (2.22 ppm) in JVM A₃, whereas the signals due to the aglycone moiety showed very similar chemical shifts and splitting patterns (Table

	M+	M ⁺ -60 (AcOH)	M ⁺ -60 -44 (CO ₂)	M ⁺ -216 (S ₁)	$ \begin{array}{c} M^{+}-216 \\ -60 \\ (S_{1}) \\ (AcOH) \end{array} $	$M^+ - 216 - 2 \times 60$	S_1^*	S_{2}^{**}
JVM A ₈ 3,2'- diacetate	665 (1.7)	605 (3.0)		449 (7.0)	389 (7.0)		216 (20)	200 (100)
JVM A ₂ 3,2'-	637	577	533	421	361		216	200
diacetate	(11)	(1.6)	(2.4)	(61)	(35)		(48)	(100)
JVM A ₄ 3,18,2'-	709	649	605	493	433		216	200
triacetate	(4.2)	(1.7)	(1.3)	(13.6)	(9.3)		(20)	(100)
JVM B ₁ 3,18,2'-	693	633	589	477	417	357	216	200
triacetate	(11)	(1.7)	(1.7)	(36)	(8.5)	(5.9)	(32)	(100)
JVM B ₈ 3,18,21,2'-	751	691		535	475	415	216	200
tetraacetate	(4.7)	(6.3)		(11)	(10)	(3.9)	(34)	(100)

Table 4. Mass spectra of juvenimicin acetates (m/e (%))

Table 5.	Chemical shifts and coupling constants of juvenimicin acetates		
	(100 MHz, CDCl ₈ ,	$\delta = ppm, \lambda$	J=Hz)

Protons	JVM A ₃ 3,2'-diacetate	JVM A ₂ 3,2'-diacetate	JVM A ₄ 3, 18, 2'-triacetate	JVM B ₁ 3, 18, 2'-triacetate	JVM B ₈ 3,18,21, 2'-tetraacetate
H ₁₈	9.57 (s. like)		4.07 (m, 2H)	4.06 (m, 2H)	4.09 (m, 2H)
H ₁₁	$\begin{array}{c} 6.66 \ (d, J_{10,11} \\ = 16) \end{array}$	6.56 (d, J=16)	6.62 (d, J=16)	7.28 (d, J=16)	7.30 (d, J=16)
	6.42 (d, J _{10,11}	6.40 (d, J=16)	6.40 (d, J=16)	6.24 (d, J=16)	6.26 (d, J=16)
H_{10}	=16)				
H_{15}	4.60 (m)	4.75 (m)	4.68 (m)	4.78 (m)	4.78 (m)
H_1'	$\begin{array}{r} 4.20 \ (d, J_{1',2'} \\ = 7) \end{array}$	$\begin{array}{c} 4.24 \ (d, J_{1',2'} \\ = 8) \end{array}$	$\begin{array}{c} 4.26 \ (d, J_{1',2'} \\ = 8) \end{array}$	$\begin{array}{c} 4.20 \ (d, J_{1',2'} \\ = 8) \end{array}$	$\begin{array}{c} 4.23 \ (d, J_{1',2'} \\ = 8) \end{array}$
${ m H}_3$	5.12 (d, like, $J_{2,3}=10,$ $J_{3,4}<2)$	5.18 (oc, $J_{3,4}=1.5,$ $J_{2,3}=3, 10$)	5.03 (d, like, J=10)	5.10 (d, like, J=10)	5.06 (d, like, J=10)
${ m H}_5$	3.50 (d, like, $J_{4,5}=10,$ $J_{5,6}<2$)	$\begin{array}{c} 3.22 \ (q, J_{4,5} = 7, \\ J_{5,6} = 3) \end{array}$	3.36 (d, like, J=9)	3.43 (d, like, J=8)	3.37 (d, like, J=8)
H_{5}'	3.44 (m)	3.45 (m)	3.45 (m)	3.43 (m)	3.44 (m)
H_{2}'	$\begin{array}{r} 4.70 \; (q, J_{2}', _{3}' \\ = 10) \end{array}$	$\begin{array}{r} 4.77 \ (q, J_{2', 3'} \\ = 10) \end{array}$	$\begin{array}{r} 4.74 \; (q, J_{2}',{}_{3}' \\ = 10) \end{array}$	$\begin{array}{r} 4.72 \ \text{(q, J}_{2', 3'} \\ = 10 \text{)} \end{array}$	$\begin{array}{r} 4.73 \; (q, J_{2}',{}_{3}' \\ = 10) \end{array}$
H ₁₃	$\begin{array}{c} 2.90 \ (d, J_{13,14} \\ = 9) \end{array}$	$ \begin{array}{r} 2.78 \text{ (d, } J_{13,14} \\ = 10 \text{)} \end{array} $	$\begin{array}{c} 2.86 \ (d, J_{13,14} \\ = 9) \end{array}$	5.78 (d, like, $J_{13,14}=10$)	5.82 (d, like, $J_{13,14}=10$)
H_{3}'	2.60 (m)	2.62 (m)	2.64 (m)	2.64 (m)	2.66 (m)
H_{21}		_		_	3.80~4.25 (m, 2H)
N-di-CH ₃	2.24 (s, $3H \times 2$)	2.25 (s, 3H×2)	2.24 (s, 3H×2)	2.23 (s, 3H×2)	2.24 (s, 3H×2)
H_{20}	1.46 (s, 3H)	1.46 (s, 3H)	1.45 (s, 3H)	1.79 (s, 3H)	1.80 (s, 3H)
SecCH ₃	$1.06 \sim 1.2$ (d, 3H×4)	0.98~1.23 (d, 3H×5)	$1.04 \sim 1.21$ (d, 3H×4)	0.95~1.20 (d, 3H×4)	$0.98 \sim 1.19$ (d, 3H×3)
H_{23}	0.84 (t, 3H)	0.86 (t, 3H)	0.85 (t, 3H)	0.92 (t, 3H)	0.92 (t, 3H)
3-OAc	2.04 (s, 3H)	1.98 (s, 3H)	1.98 (s, 3H)	2.01 (s, 3H)	2.02 (s, 3H)
2'-OAc	2.11 (s, 3H)	2.07 (s, 3H)	2.06 (s, 3H)	2.06 (s, 3H)	2.06 (s, 3H)
18-OAc			2.02 (s, 3H)	2.02 (s, 3H)	2.03 (s, 3H)
21-OAc		-		_	2.04 (s, 3H)

3). From these data it was assumed that the sugar moiety of JVM A_3 consists of a deoxy derivative of mycaminose. On acidic hydrolysis of JVM A_3 , D-desosamine hydrochloride⁷⁾ was obtained.

The differences between cirramycin A_1 and JVM A_3 lie in their sugar moieties.

The mass spectrum of JVM A₈ 3,2'-diacetate (Table 4) displays peaks at m/e 665 (M⁺), 605 (M⁺-60 (AcOH)), 449 (M⁺-216 (C₁₀H₁₈NO₄)), 389 (449-60), 216 and 200 (base peak, C₁₀H₁₇NO₈). In the NMR spectrum, the proton signals at 3.87 ppm (d, like, J=10 Hz, H₈) and 3.18 (q, J=7, 10 Hz, H₂') in JVM A₈ shifted downfield to 5.12 and 4.70 ppm, respectively (Table 5) in its 3,2'-diacetate.

The data available for cirramycin A_1 was very helpful in determining the structure of JVM A_3 . It was found that rosamicin⁹⁾ was identical with JVM $A_3^{8)}$ in their physicochemical properties and antimicrobial activities.* The four other components of JVM are new macrolide antibiotics.

Chemical Structures of Juvenimicins

Juvenimicin A_3 consists of a sixteen-membered macrocyclic lactone and a dimethylamino sugar, desosamine, as shown in Chart 1. The chromophore of JVM A_3 is attributable to the grouping O = C - CH = CH - C - CH. Since the UV maxima of JVM A_2 and A_4 are observed at 241 nm, the same

as that of JVM A₃, they were assumed to have the above-mentioned group which was supported by the chemical shifts of H₁₀, H₁₁ and H₂₀ as shown in Table 3. On the other hand, the chromophore of JVM B₁ and B₃ was assumed to be O=C-CH=CH-C=CH on the basis of its UV maxima at 282 nm and the Me

chemical shifts of H_{10} , H_{11} and H_{20} . In the mass spectral fragmentation pattern of basic macrolides, it has been known that the fragments derived from the dimethylamino sugar moiety show the strongest peaks. The fragments m/e 158 and 174 for JVM A_3 were also observed for JVM A_2 , A_4 , B_1 and B_3 . They were, therefore, assumed to also have desosamine as their sugar moiety.

Juvenimicin A₄

The mass spectral fragmentation pattern of JVM A_4 is very similar to that of JVM A_3 . The molecular ion (*m*/*e* 583) and the fragment peaks containing the aglycone moiety of JVM A_4 , however, appear 2 mass units (2H) higher than the corresponding peaks of JVM A_3 as shown in Table 2, suggesting that the structural difference resides in the aglycone moiety. In the NMR spectrum of JVM A_4 , no signal attributable to the 18-aldehyde group is observed and, instead, methylene signal is found at

^{*} It had been reported by KAWAMOTO *et al.*¹⁰⁾ that rosamicin was different from juvenimicin on the basis of the Rf values (paper chromatography), but no differences were observed by direct comparison.

VOL. XXIX NO. 11 THE JOURNAL OF ANTIBIOTICS

3.70 ppm (m, 2H, CH₂CH₂-O, H₁₈). Other signals are almost the same as those of JVM A₈ as shown in Table 3. Acetylation of JVM A₄ yielded a triacetate (M^+ *m/e* 709), while JVM A₈ gave a diacetate, indicating that JVM A₄ has one additional hydroxyl group in place of the aldehyde group in JVM A₈ as shown in Chart 1. For confirmation of the proposed structure, JVM A₈ was reduced with sodium borohydride, and the product obtained was identical in all respects with JVM A₄.

Juvenimicin B₁

The mass spectral fragmentation pattern of JVM B₁ is very similar to that of JVM A₄. The molecular ion (*m/e* 567) and fragment ions which contain the aglycone moiety of JVM B₁, however, appear at 16 mass units (O) lower than the corresponding peaks of JVM A₄ (Table 2). In consequence JVM B₁ was assumed to have a double bond in place of the epoxide group in JVM A₄. The partial structure, O=C-CH=CH-C=CH is also confirmed by the chemical shifts of H₁₀, H₁₁, H₁₈ and H₂₀ in JVM B₁ Me

as shown in Table 3. The last three of these display down-field shifts relative to those of the corresponding protons of JVM A₄ (6.54 ppm \rightarrow 7.28, 2.78 \rightarrow 5.83, 1.40 \rightarrow 1.78). Such shifts may be attributed to the presence of a double bond at position 12 in JVM B₁. The structure of JVM B₁ (Chart 1) was established following its preparation from the interaction of JVM A₄ with potassium iodide.

Juvenimicin B₈

The mass spectral fragmentation pattern of JVM B₃ is very similar to that of JVM B₁. The molecular ion (m/e 583) and the fragment peaks containing the aglycone moiety of JVM B₃ appear at 16 mass units (O) higher than the corresponding peaks of JVM B₁ as shown in Table 2, suggesting that JVM B₃ has an additional oxygen in the aglycone moiety. In comparing the NMR spectrum of JVM B₃ with that of JVM B₁, it becomes apparent that the 14-methyl signal at 0.98 ppm in JVM B₁ has been replaced by a methylene signal at 3.62 ppm (m, 2H, H₂₁). Acetylation of JVM B₃ gave a tetraacetate (M⁺ m/e 751), while JVM B₁ yielded a triacetate, indicating that JVM B₃ has an additional hydroxyl group in the aglycone moiety. An NMR spin-decoupling study and the down-field shift of H₂₁ (3.80 \rightarrow 4.25 ppm, m, 2H, Table 5) in JVM B₃ tetraacetate suggested the location of this additional hydroxyl group at position 21.

Juvenimicin A₂

The mass spectral fragmentation pattern of JVM A_2 is very similar to that of JVM A_3 . However, the molecular ion (*m*/*e* 553) and the fragment peaks which contain the aglycone moiety of JVM A_2 appear at 28 mass units (C=O) lower than the corresponding peaks of JVM A_3 as shown in Table 2, suggesting that JVM A_2 is less one C=O group in the aglycone moiety. In the NMR spectrum of JVM A_2 there was no signal for an aldehyde group. In its place there was an additional secondary methyl signal with the remainder of the spectrum being almost the same as that of JVM A_3 as shown in Table 3. An NMR spin-decoupling study of JVM A_2 diacetate led to the following partial structure.

On irradiation of the proton at 1.68 ppm (H_6), the doublet methyl signal at 0.98 ppm became a singlet and the quartet at 3.22 ppm collapsed to a doublet. This establishes the point of attachment of this

THE JOURNAL OF ANTIBIOTICS

Juvenimicins	Acut	e toxicity	Protection		
saveniments	Route	LD ₅₀ (mg/kg)	Route	ED ₅₀ (mg/kg)*	
A_2	i.p.	200~400	s.c. p.o.	<i>ca</i> . 100 200	
A ₃	i.p. p.o.	200~400 >1,000	s.c. p.o.	2.81 218	
B1	i.p.	125~250	s.c. p.o.	5.81 81.2	
B_3	i.p.	250~500	s.c. p.o.	5.0 >500	

Table 6. Biological activities of the juvenimicins in mice

* Intraperitoneal infection with Staphylococcus aureus 308 A-1

additional secondary methyl group as position 6. On the basis of these observations, the structure shown in Chart 1 was proposed for JVM A_2 .

Each of the components of the JVM complex was found to have interesting and characteristic structures. JVM A₂ lacks a formylmethyl group having instead a methyl group at position 6. In 16-membered macrolides it is known that the neutral macrolides such as chalcomycin,¹¹⁾ neutramycin¹²⁾ and aldgamycins E and F¹³⁾ have a methyl group at position 6, but JVM A₂ is the first example among the basic macrolides. The side chain at position 6 of JVM A₄, B₁ or B₃ is comprised of a hydroxyethyl group. In the basic macrolides only relomycin¹⁴⁾ is known to have a hydroxyethyl group at this position. JVM B₃ may be the first example of a macrolide possessing a free 14-hydroxymethyl group. A neutral sugar is attached to the 14-hydroxymethyl group of tylosin,¹⁵⁾ relomycin, angolamycin,¹⁶⁾ chalcomycin, neutramycin and aldgamycins E and F.

The various components of JVM may afford valuable insight into the biosynthetic pathways leading to the macrolides and provide answers to the structure-activity relationships for the macrolide antibiotics.

Biological Activity

The components of JVM display antimicrobial activity against gram-positive bacteria, some of gram-negative bacteria and the others,¹⁾ *in vitro*.

Table 6 shows the therapeutic effects $(ED_{50})^*$ and acute toxicities $(LD_{50})^{**}$ of the JVM components in mice. The oral protections afforded by JVM A₂ and A₃ were of the same whereas that of B₁ was superior to that of JVM A₃ despite its weak *in vitro* activity. JVM B₈ was not effective by oral administration. By subcutaneous administration all components with the exception of JVM A₂ displayed good activity at low dosage. It is believed that the activity of each component is a reflection of its lipophilicity. The acute toxicities of these antibiotics were somewhat more pronounced than that of macrolide antibiotics.

Experimental

Isolation of juvenimicins

The fermentation broth of *M. chalcea* var. *izumensis* (30 liters) was mixed with Hyflo Super-cel (750 g, Johns-Manville Co.) and filtered to afford broth filtrate (23.5 liters). The filtrate adjusted to

^{*, **} Data provided by Drs. K. TSUCHIYA, M. KONDO and H. YOKOTANI of this Division.

VOL. XXIX NO. 11

pH 9 was extracted with ethyl acetate (11 liters×2) after addition of sodium sulfate (2 kg) for salting-out. The extract was washed, dried and concentrated. The concentrate (1 liter) was extracted with dilute hydrochloric acid (3 liters, pH 3). JVM was transferred to the aqueous layer and EVM remained in the ethyl acetate layer. The aqueous layer adjusted to pH 9 was reextracted with ethyl acetate (1 liter×2). The washed extract was concentrated to give a crude powder of JVM (650 mg). The crude powder was chromatographed on a column of Sephadex LH-20 (150 ml, Pharmacia Co.) and eluted with ethyl acetate to afford a pale yellow powder (450 mg). The powder was purified by TLC on silica gel HF₂₅₄ (Merck Co.) with the solvent system CHCl₃ - MeOH - 7% NH₄OH (40:12:20, lower phase). The major components were scraped from silica gel plates and extracted with ethyl acetate. The extracts were concentrated to give JVM A₂ (70 mg), A₃ (120 mg), A₄ (10 mg), B₁ (25 mg) and B₃ (60 mg), respectively.

The ethyl acetate layer (1 liter) remaining after washing with dilute hydrochloric acid was concentrated after washing with 2% sodium bicarbonate to afford a yellow powder of EVM (12 g). The powder (2 g) was chromatographed on a column of activated carbon and the active fraction was eluted with ethyl acetate. After concentration of the eluate a white powder of EVM (1.3 g) was obtained on addition of hexane. The powder was purified by TLC on silica gel HF₂₅₄ with ethyl acetate. The main component was extracted with ethyl acetate and the extract was concentrated after washing with water to give pure EVM D (520 mg). EVM D; $[\alpha]_D^{22}$ -25.1° (*c* 1.0, MeOH), UV; λ_{max}^{MeOH} 286 nm (E^{1%}_{1em} 19.2), $\lambda_{MeOH-0.1N}$ NaOH 298 nm (E^{1%}_{1em} 83).

Anal. Calcd. for C₆₆H₉₉O₃₅NCl₂: C, 51.56; H, 6.49; N, 0.91; Cl, 4.61.

Found: C, 51.21; H, 6.49; N, 1.28; Cl, 4.66.

The IR spectrum and antimicrobial spectrum of this sample was in good accord with the corresponding data for everininomic D.^{2b)}

Acetylation of JVM components

A solution of JVM components (120 mg each) in acetic anhydride (2 ml) and pyridine (2 ml) was allowed to stand at room temperature overnight. The reaction solution was poured into iced 2% sodium bicarbonate and extracted with ethyl acetate at pH 8.5. The extract was concentrated after washing with water and 2% sodium bicarbonate. The concentrated residue was purified by TLC on silica gel HF₂₅₄ developed with C₆H₆ - Me₂CO (1:1). The main band was extracted with ethyl acetate and the extract was concentrated to dryness. Each acetyl derivatives was obtained as a foam (70~80 mg each).

JVM A₂ 3,2'-diacetate: $[\alpha]_{D}^{24}$ +3.53° (c 0.51, MeOH), UV; λ_{max}^{MeOH} 240 nm (ε =14,800). Calcd. for C₃₄H₅₅NO₁₀: C, 64.02; H, 8.69; N, 2.20. Anal. C, 63.95; H, 8.81; N, 2.07. Found: JVM A₃ 3,2'-diacetate (rosamicin 3,2'-diacetate): $[\alpha]_{D}^{22}$ -17.5° (c 0.48, EtOH), UV; λ_{max}^{MeoH} 239 nm $(\epsilon = 12,700).$ Anal. Calcd. for C₈₅H₅₅NO₁₁: C, 63.14; H, 8.33; N, 2.10. Found: C, 63.07; H, 8.92; N, 2.10. JVM A₄ 3,18,2'-triacetate: UV; $\lambda_{\text{max}}^{\text{MeOH}}$ 240 nm (ε =13,600). Anal. Calcd. for C₃₇H₅₉NO₁₂: C, 62.60; H, 8.38; N, 1.97. Found: C, 62.51; H, 8.88; N, 2.01. JVM B₁ 3,18,2'-triacetate: $[\alpha]_{D}^{24}$ +30.6° (c 0.51, MeOH), UV; λ_{max}^{MeOH} 281 nm (ϵ =23,600). Anal. Calcd. for C₃₇H₅₉NO₁₁: C, 64.05; H, 8.57; N, 2.02. Found: C, 64.00; H, 9.01; N, 2.37. JVM B₈ 3,18,21,2'-tetraacetate: $[\alpha]_{2^3}^{2^3} - 2.56^{\circ}$ (c 0.39, MeOH), UV; λ_{\max}^{MeOH} 281 nm (ϵ =22,200). Anal. Calcd. for C₃₉H₆₁NO₁₃: C, 62.30; H, 8.18; N, 1.86. Found: C, 62.08; H, 8.53; N, 2.06.

D-Desosamine hydrochloride

A solution of JVM A₃ (596 mg) in 3 N hydrochloric acid (20 ml) was refluxed for 2 hours. The filtered reaction solution was washed with chloroform and *n*-butanol to remove fat-soluble substances. The concentrated aqueous solution was applied to a column of Dowex 50 W \times 8 (50~100 mesh, 20

ml) and eluted with 0.5 N and N hydrochloric acid (150 ml each). The eluate was passed through Amberlite IR-45 (20 ml), and concentrated to afford D-desosamine hydrochloride (α, β -anomer, 130 mg); $[\alpha]_{D}^{23}$ +50.6° (*c* 0.51, H₂O).

Anal. Calcd. for C₈H₁₇NO₈·HCl: C, 45.39; H, 8.57; N, 6.62. Found: C, 45.08; H, 8.37; N, 6.60.

The IR and NMR spectra were in accord with those of D-desosamine hydrochloride.

Isolation of rosamicin

The culture filtrate of *M. rosaria* NRRL No. 3718 (27 liters) was extracted with ethyl acetate (1/1 v. \times 2) at pH 9 after addition of sodium chloride. (2.7 kg). The extract (57 liters) was washed with water (1/4 v. \times 2) and concentrated under reduced pressure. The concentrate (2.6 liters) was extracted with dilute hydrochloric acid (pH 2) and the aqueous layer was reextracted with ethyl acetate at pH 9. The ethyl acetate layer was concentrated after washing with water and diluted with hexane to give a crude powder (2.5 g). The crude powder was purified by TLC on silica gel HF₂₅₄ with the solvent system of CHCl₃ - MeOH - 7% NH₄OH (40:12:20, lower layer). The concentrate was precipitated from hexane to afford a pure powder of rosamicin (910 mg); $[\alpha]_{D}^{23}$ -21.3° (c 0.5, CHCl₃), -32.3° (c 0.5, EtOH), UV; $\lambda_{max}^{\text{stoff}}$ 240 nm (ε =12,000).

Anal.Calcd. for $C_{\$1}H_{\$1}NO_{\$}$:C, 64.08; H, 8.85; N, 2.41.Found:C, 63.38; H, 8.85; N, 2.81.

MS: *m*/*e* 581 (M⁺).

Sodium borohydride reduction of JVM A₃

To a solution of JVM A₈ (280 mg) in 80% MeOH - 0.2 M phosphate buffer (pH 7.1, 21 ml) was added sodium borohydride (30 mg) in 50% MeOH - 0.2 M phosphate buffer (pH 7.1, 1.4 ml) and the whole was stirred at room temperature for 1 hour. After addition of glycine-NaCl/NaOH buffer (pH 9.3, 200 ml) the reaction mixture was extracted with chloroform. The organic layer was concentrated after washing with water and the residue was purified by TLC on Silica gel HF₂₅₄. The JVM A₄ was obtained on addition of hexane (80 mg); $[\alpha]_D^{24} - 29.9^\circ$ (*c* 0.5, MeOH) and -7.4° (*c* 0.47, CHCl₈), UV; λ_{max}^{eOH} 241 nm (ε =14,000).

Anal. Calcd. for C₈₁H₅₈NO₉: C, 63.86; H, 9.16; N, 2.40. Found: C, 62.79; H, 8.89; N, 2.18.

The synthetic sample was identical in all respects with JVM A₄ by TLC, IR, mass and NMR spectra and antimicrobial activity.

Deepoxydation of JVM A₄

To a solution of JVM A₄ (200 mg) in acetic acid (2 ml) was added potassium iodide (300 mg) and the whole was stirred at 80°C for 30 minutes. The reaction mixture was added to iced water and extracted with ethyl acetate at pH 9. The extract was washed with 2% sodium thiosulfate and concentrated. JVM B₁ was obtained from hexane as colorless powder (44 mg); UV; λ^{EtOH}_{max} 282 nm (ε=16,100). *Anal.* Calcd. for C₃₁H₅₈NO₈: C. 65.58: H. 9.41: N. 2.47.

al.	Calcd. for $C_{31}H_{53}NO_8$:	C, 65.58; H, 9.41; N, 2.4	1.
	Found:	C, 64.02; H, 9.43; N, 2.2	8.

The synthetic sample was identical in all respects with JVM B_1 by TLC, IR, mass and NMR spectra and antimicrobial activity.

Acknowledgement

The authors wish to express their gratitude to Drs. R. TAKEDA and J. UEYANAGI for their continued interest and encouragement throughout this work. Thanks are also due to those members of this division in charge of fermentation, extraction, elemental analysis, physicochemical measurements, biological assays and toxicological evaluations.

References

- HATANO, K.; E. HIGASHIDE & M. SHIBATA: Studies on juvenimicin, a new antibiotic. I. Taxonomy, fermentation and antimicrobial properties. J. Antibiotics 29: 1163~1170, 1976
- 2) a) WEINSTEIN, M. J.; G. M. LUEDEMANN, E. M. ODEN & G. H. WAGMAN: Everninomicin, a new antibiotic

complex from *Micromonospora carbonacea*. Antimicr. Agents & Chemoth.-1964: 24~32, 1965
b) GANGULY, A. K.; O. Z. SARRE, D. GREEVES & J. MORTON: Structure of everninomicin D. J. Amer. Chem. Soc. 97: 1982~1985, 1975

- FISCHBACH, H. & J. LEVINE: The identification of the antibiotics. Antibiot. & Chemoth. 3: 1159~1169, 1953
- 4) CELMER, W. D.: Stereochemical problems in macrolide antibiotics. Pure Appl. Chem. 28: 413~453, 1971
- 5) a) KOSHIYAMA, H.; H. TSUKIURA, K. FUJISAWA, M. KONISHI, M. HATORI, K. TOMIYA & H. KAWAGUCHI: Studies on cirramycin A₁. I. Isolation and characterization of cirramycin A₁. J. Antibiotics 22: 61~64, 1969
 b) FUJISAWA, K.; K. MATSUMOTO, T. OHMORI, T. HOSHIYA & H. KAWAGUCHI: Studies on cirramycin A₁. II. Biological activity of cirramycin A₁. J. Antibiotics 22: 65~70, 1969
 c) TSUKIURA, H.; M. KONISHI, M. SAKA, T. NAITO & H. KAWAGUCHI: Studies on cirramycin A₁. III.
 - Structure of cirramycin A_1 . J. Antibiotics 22: 89~99, 1969
- a) SUZUKI, T.: The structure of an antibiotic, B-58941. Bull. Chem. Soc. Japan 43: 292, 1970
 b) SUZUKI, T.: A new derivative of antibiotic, B-58941. Chemistry Letters 1973: 799~804, 1973
- a) FLYNN, E. H.; M. V. SIGAL, Jr., P. F. WILEY & K. GERZON: Erythromycin. I. Properties and degradation studies. J. Amer. Chem. Soc. 76: 3121~3131, 1954
 b) Woo, P. W. K.; H. W. DION, L. DURHAM & S. MOSHER: The stereochemistry of desosamine, an NMR analysis. Tetrahedron Letters 1962: 735~739, 1962
- SHIBATA, M.; K. HATANO, E. HIGASHIDE, H. YAMANA & T. KISHI: Japan Patent S-47-4514, July 11, 1969
- 9) a) WEINSTEIN, M. J.; G. H. WAGMAN & J. A. MARQUEZ: U.S. Patent 4916, Jan. 22, 1970
 b) REIMANN, H. & R. S. JARET: Structure of rosamicin, a new macrolide from *Micromonospora rosaria*. J. C. S. Chem. Comm. 1972–23: 1270, 1972
- KAWAMOTO, I.; R. OKACHI, H. KATO, S. YAMAMOTO, I. TAKAHASHI, S. TAKASAWA & T. NARA: The antibiotic XK-41 complex. I. Production, isolation and characterization. J. Antibiotics 27: 493~501, 1974
- 11) Woo, P. W. K.; H. W. DION & Q. R. BARTZ: The structure of chalcomycin. J. Amer. Chem. Soc. 86: 2726~2727, 1964
- 12) MITSCHER, L. A. & M. P. KUNSTMANN: The structure of neutramycin. Experientia 25: 12~13, 1969
- ACHENBACH, H. & W. KARL: Untersuchungen an Stoffwechselprodukten von Mikroorganismen. VI & VIII. Zur Struktur des Antibiotikums Aldgamycin E und F. Chem. Ber. 108: 759~789, 1975
- 14) WHALEY, H. A.; E. L. PATTERSON, A. C. DORNBUSH, E. J. BACKUS & N. BOHONOS: Isolation and characterization of relomycin, a new antibiotic. Antimicr. Agents & Chemoth.-1963: 45~48, 1964
- MORIN, R. B.; M. GORMAN, R. L. HAMILL & P. V. DEMARCO: The structure of tylosine. Tetrahedron Letters 1970: 4737~4740, 1970
- 16) KINUMAKI, A. & M. SUZUKI: Proposed structure of angolamycin (shincomycin A) by mass spectrometry. J. Antibiotics 25: 480~482, 1972